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Review and Introduction
Let y1, ..., yn denote n independent observations on a response.

Treat yi as a realization of a random variable Yi

In the general linear model we assume that

Yi ∼ N(µi, σ2)

And we further assume that the expected value µi is a linear function

µi = X ′
iβ

The generalized linear model generalizes both the random and systematic component.

Components of Generalized Linear Models
All generalized linear models have three components:

• Random component

• Systematic component

• Link function

Random Component

The random component of a GLM identifies the response variable Y and selects a probability distribution
for it.

Denote the observations on Y by (Y1, Y2, ..., Yn). Standard GLMs treat Y1, Y2, ..., Yn as independent.

If the observations on Y are binary then we assume a binomial distribution for Y

In some applications, each observation is a count. Then we have Poisson or Negative Binomial

If each observation is continuous, we might assume a normal distribution for Y.
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THE EXPONENTIAL FAMILY

Systematic Component

The systematic component of a GLM specifies the explanatory variables.

These enter linearly as predictors on the right-hand side of the model equation.

The systematic component specifies the variables that are the {xj} in the formula

α + β1x1 + ... + βkxk

Link Function

Denote the expected value of Y the mean of the probability distribution by µ = E(Y )

The link function specifies a function g(.) that relates µ to the linear predictors as

g(µ) = α + β1x1 + ... + βkxk

The function g(µ) the link function connects the random and the systematic components.

The Exponential Family
We assume that observations come from a distribution in the exponential family with the following probability
density function:

f(yi; θi, ϕ) = exp
{ yiθi

a(ϕ) + c(yi, ϕ)
}

(1)

Here θi, ϕ are parameters and a(.), b(.) and c(.) are known functions.

The θi and ϕ are location and scale parameters respectively.

Normal Distribution
The normal distribution is given as:

f(yi, θi, ϕ) = 1√
2πσ

exp{− 1
2σ2 (yi − µ)2}

Which can be expressed as:

f(yi, θi, ϕ) = exp
[

− 1
2 log(2πσ2) − 1

2σ2 (y2
i − 2yiµ + µ2)

]
We can re-factor and have:

f(yi, θi, ϕ) =
(2µyi − µ2

2σ2

)
− 1

2

( y2
i

σ2 + log(2πσ2)
)

θi = µ, ϕ = σ2, ai(ϕ) = ϕ, b(θi) = θ2
i

2 , c(yi, ϕ) = 1
2

(
y2

i

σ2 + log(2πσ2)

The mean is given as E(yi) = b′(θi)

The variance V ar(yi) = b′′(θi)a(ϕ)
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Exercises MAXIMUM LIKELIHOOD ESTIMATION OF GLM

Exercises
Exercise 1

The PMF of the Poisson distribution is given as:

f(y|µ) = e−µµy

y!

Show that the Poisson Distribution can be expressed as a member of exponential family and derive the mean
and variance.

Exercise 2

The PMF of the Binomial distribution is given as:

f(y|n, p) =
(

n

y

)
py(1 − p)n−y

Show that the binomial Distribution can be expressed as a member of exponential family and derive the
mean and variance.

Exercise 3

The PMF of the Negative Binomial distribution is given as:

f(y|r, p) =
(

r + y − 1
y

)
pr(1 − p)y

Show that the negative binomial Distribution can be expressed as a member of exponential family and derive
the mean and variance.

Maximum Likelihood Estimation of GLM
Unlike for the general linear model, there is no closed form expression for the MLE of β in general for GLMs.

However all the GLMs can be fit using the same algorithm a form of iteratively re-weighted least squares

Given an initial value for β̂ calculate the estimated linear predictor η̂i = x′
iβ and use that to obtain the

fitted values µ̂i = g−1(η̂i). Calculate the adjusted dependent variable

zi = η̂i + (yi − µ̂i)(
dηi

dµi
)0

Calculate the iterative weights

W −1
i = ( dηi

dµi
)Vi

where Vi is the variance function evaluated at µ̂i

Regress zi on xi with weight Wi to give the new estimate of β
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LOGISTIC REGRESSION

Logistic Regression
In logistic problems we are modeling binary data. The usual coding is that

Y ∈ {1 = ”Success or 0 = ”Failure}

The Binomial distribution is a good way to represent this kind of data.

The systematic component in our logistic regression model will be the binomial distribution.

We show that the binomial distribution belongs to the exponential family of distributions

f(y; θ, ϕ) =
(

n

y

)
πy(1 − π)n−y

= exp
[
y log( π

1 − π
) + n log(1 − π) + log

(
n

y

)] (2)

Here

θ = log( π

1 − π
)

b(θ) = − log(1 − π) = log(1 + exp(θ))

µ = b′(θ) = ∂

∂θ
log[1 + exp(θ)] = θ

1 + exp(θ) = π

g(µ) = log[ π

1 − π
] = θ

You can easily show that

E[Yi] = µi = niπi

and

V ar(Yi) = σ2
i = niπi(1 − πi)

In logistic regression the outcome is binary example

• Alive or dead

• Pass or fail

• Pay or Default
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Logit Transformation LOGISTIC REGRESSION

Logit Transformation
We would like to have the probabilities πi depend on a vector of observed covariates Xi

The idea is to let πi be a linear function of the covariates say

πi = X ′
iβ

where β is a vector of regression coefficients.

We transform the probability πi to have the odds defined as:

oddsi = πi

1 − πi

Taking the natural logarithm of the odds that is logit or log-odds we have:

ηi = logitπi = log πi

1 − πi

Solving for πi we have:

πi = logit−1(ηi) = eηi

1 + eηi

We are now in a position to define the logistic regression model by assuming that the logit of the probability
πi rather than the probability itself follows a ,linear model.

Logistic Regression Model
Suppose that we have k independent observations y1, ..., yk and that the i − th observation can be treated
as a realization of the random variable Yi.

We assume that Yi has a binomial distribution

Yi ∼ B(ni, πi)

The above equation defines the stochastic structure of the model.

Suppose further that the logit of the underlying probability πi is a linear function of the predictors

logit(πi) = x′
iβ

Where xi is a vector of covariates and β is a vector of regression coefficients. This defines the systematic
structure of the model.

The models defined above is a generalized linear model with binomial response and link logit.

The interpretation of βj represents the change in the logit of the probability associated with a unit change
in the j − th predictor holding all other predictors constant.

Exponetiating equation above we find the odds for the i − th unit given by

πi

1 − πi
= exp{x′

iβ}

This expression defines a multiplicative model for the odds.

Exponentiating we get exp{x′
iβ} times exp{βj}.

By Dr. Mutua Kilai 5



Estimation and Hypothesis Testing LOGISTIC REGRESSION

The exponentiated exp{βj} represents the odds ratio

Solving for the probability πi in the logit model gives the more complicated model

πi = exp{x′
iβ}

1 + exp{x′
iβ}

Estimation and Hypothesis Testing
Maximum Likelihood Estimation

The likelihood function for n independent binomial observations is a product of densities.

Taking logs, we find that the log-likelihood function

log L(β) =
∑

{yi log(πi) + (ni − yi) log(1 − πi)}

where πi depends on the covariates xi and a vector of p parameters β through the logit transformation.

The working dependent variable zi which has elements

zi = η̂i + yi − µ̂i

µ̂i(ηi − µ̂i)
ni

Where ni are the binomial denominators. We then regress z on the covariates calculating the weighted least
squares estimate

β̂ = (X ′WX)−1X ′Wz

Where W is a diagonal matrix of weights with entries

wii = µ̂i(ni − µ̂i)/ni

The variance is given by:

var(β̂) = (X ′WX)−1

Goodness of Fit Statistic

Suppose we have just fitted a model and want to assess how well it fits the data.

A measure of discrepancy between observed and fitted values is the deviance statistic, which is given by

D = 2
∑

{yi log( yi

µ̂i
) + (ni − yi) log

( ni − yi

ni − µ̂i

)
} (3)

where yi is the observed and µ̂i is the fitted value for the i − th observation.

An alternative measure of goodness of fit is Pearson chi-squared statistic which for binomial data can be
written as

χ2
P =

∑
i

ni(yi − µ̂i)2

µ̂i(ni − µ̂i)
(4)
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Estimation and Hypothesis Testing LOGISTIC REGRESSION

Tests of Hypothesis

As usual, we can calculate Wald tests based on the large-sample distribution of the m.l.e., which is approxi-
mately normal with mean β and variance-covariance matrix.

In particular we can test the hypothesis,

H0 : βj = 0

Concerning the significance of a single coefficient by calculating the ratio of the estimate to its standard
error

z = β̂j√
ˆ

V ar( ˆ )βj

This statistic has approximately a standard normal distribution in large samples.

The wald test can be use to calculate a confidence interval for βj

The 100(1 − α)% confidence that the true parameter lies in the interval with boundaries

β̂j ± z1− α
2

√
ˆV ar(β̂j)

Confidence intervals for effects in the logit scale can be translated into confidence intervals for odds ratios
by exponentiating the boundaries.

Example 1

A researcher is interested in how variables, such as GRE (Graduate Record Exam scores), GPA (grade point
average) and prestige of the undergraduate institution, effect admission into graduate school. The response
variable, admit/don’t admit, is a binary variable.
mydata <- read.csv("admit.csv")
knitr::kable(head(mydata))

admit gre gpa rank
0 380 3.61 3
1 660 3.67 3
1 800 4.00 1
1 640 3.19 4
0 520 2.93 4
1 760 3.00 2

The code below estimates a logistic regression model using the glm (generalized linear model) function. First,
we convert rank to a factor to indicate that rank should be treated as a categorical variable.
# convert rank to factor
mydata$rank <- factor(mydata$rank)

# fit the logistic regression model
mylogit <- glm(admit ~ gre + gpa + rank, data = mydata, family = "binomial")

# output a summary table neatly
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Estimation and Hypothesis Testing LOGISTIC REGRESSION

library(gtsummary)

# output without odds ratio

tbl_regression(mylogit)

Characteristic log(OR) 95% CI p-value
gre 0.00 0.00, 0.00 0.038
gpa 0.80 0.16, 1.5 0.015
rank
1 — —
2 -0.68 -1.3, -0.06 0.033
3 -1.3 -2.0, -0.67 <0.001
4 -1.6 -2.4, -0.75 <0.001

The logistic regression coefficients give the change in the log odds of the outcome for a one unit increase in
the predictor variable.

Both gre and gpa are statistically significant, as are the three terms for rank.

• For every one unit change in gre, the log odds of admission (versus non-admission) increases by 0.002

• For a one unit increase in gpa, the log odds of being admitted to graduate school increases by 0.804

• The indicator variables for rank have a slightly different interpretation. For example, having attended
an undergraduate institution with rank of 2, versus an institution with a rank of 1, changes the log
odds of admission by -0.675.

We can test for an overall effect of rank using the wald.test function.
library(aod)
wald.test(b = coef(mylogit), Sigma = vcov(mylogit), Terms = 4:6)

## Wald test:
## ----------
##
## Chi-squared test:
## X2 = 20.9, df = 3, P(> X2) = 0.00011

The chi-squared test statistic of 20.9, with three degrees of freedom is associated with a p-value of 0.00011
indicating that the overall effect of rank is statistically significant.

The odds ratio with their respective CI is given as
# table with odds ratio
library(gtsummary)

tbl_regression(mylogit, exponentiate = TRUE)

Characteristic OR 95% CI p-value
gre 1.00 1.00, 1.00 0.038
gpa 2.23 1.17, 4.32 0.015
rank
1 — —
2 0.51 0.27, 0.94 0.033
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Likelihood Ratio Test LOGISTIC REGRESSION

Characteristic OR 95% CI p-value
3 0.26 0.13, 0.51 <0.001
4 0.21 0.09, 0.47 <0.001

Now we can say that for a one unit increase in gpa, the odds of being admitted to graduate school (versus
not being admitted) increase by a factor of 2.23.

The fitted model is given by:

log
( π

1 − π

)
= β0 + β1X1 + β2X2 + β3Xi2 + β4Xi3 + β5Xi4

log
( π

1 − π

)
= −3.98 + 0.002X1 + 0.80X2 − 0.68X3 − 1.3X4 − 1.6X5

We can predict a new variable log of the odds and have:

If the gpa score is 3.8, gre score is 4.0 and the rank of the student is 2

Then:

log
( π

1 − π

)
= −3.98 + 0.002 × 4 + 0.80 × 3.8 − 0.68 × 1 − 1.3 × 0 − 1.6 × 0

The odds is the exponentiate of the log-odds as follows:

π = eβ0+β1X1+β2X2+β3Xi2+β4Xi3 +β5Xi4

1 + eβ0+β1X1+β2X2+β3Xi2+β4Xi3 +β5Xi4

Likelihood Ratio Test
The likelihood ratio test is used to test the null hypothesis that any subset of β

′s is equal to zero.

The likelihood ratio test statistic is given as

Λ∗ = −2(L( ˆβ(0)) − L(β̂))

where l(β̂) is the log-likelihood of the fitted model l( ˆβ(0)) is the log-likelihood of the reduced model specified
by the null hypothesis evaluated at the maximum likelihood estimate of that reduced model.

The test statistic has a χ2 distribution with k − r degrees of freedom.

Statistical software often presents results for this test in terms of deviance, which is defined as -2 times
log-likelihood.

We can compare the two models as:

• Fit one model without the rank variable

• Fit another model with the rank variable
# model 1

model1 <- glm(admit ~ gre + gpa, data = mydata, family = "binomial")
summary(model1)
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Likelihood Ratio Test LOGISTIC REGRESSION

##
## Call:
## glm(formula = admit ~ gre + gpa, family = "binomial", data = mydata)
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -4.949378 1.075093 -4.604 4.15e-06 ***
## gre 0.002691 0.001057 2.544 0.0109 *
## gpa 0.754687 0.319586 2.361 0.0182 *
## ---
## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 499.98 on 399 degrees of freedom
## Residual deviance: 480.34 on 397 degrees of freedom
## AIC: 486.34
##
## Number of Fisher Scoring iterations: 4

# Model 2

# convert rank to factor
mydata$rank <- factor(mydata$rank)

# fit the logistic regression model
model2 <- glm(admit ~ gre + gpa + rank, data = mydata, family = "binomial")
summary(model2)

##
## Call:
## glm(formula = admit ~ gre + gpa + rank, family = "binomial",
## data = mydata)
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -3.989979 1.139951 -3.500 0.000465 ***
## gre 0.002264 0.001094 2.070 0.038465 *
## gpa 0.804038 0.331819 2.423 0.015388 *
## rank2 -0.675443 0.316490 -2.134 0.032829 *
## rank3 -1.340204 0.345306 -3.881 0.000104 ***
## rank4 -1.551464 0.417832 -3.713 0.000205 ***
## ---
## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 499.98 on 399 degrees of freedom
## Residual deviance: 458.52 on 394 degrees of freedom
## AIC: 470.52
##
## Number of Fisher Scoring iterations: 4

The deviance statistic is 480.34 - 458.52 = 21.82. The χ2
1,0.05 = 3.84 thus we conclude that the full model is

better than the reduced model.
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